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Introduction
Covariance matrix estimation in p � n setting
(genomic applications), very high dimensional
model space, an unstructured p × p covariance
matrix has O(p2) free parameters. Key: parsi-
monious modeling. Solution: Factor mod-
els, explain dependence through shared depen-
dence on fewer latent factors:

yi = µ+ Ληi + εi, εi ∼ Np(0,Σ), i = 1, . . . , n

µ ∈ Rp a vector of means, assumed µ = 0,
ηi ∈ Rk latent factors, Λ a p×k matrix of factor
loadings with k � p, εi has diagonal covariance
Σ = σ2Ip. Hence Var(yi) := Ω = ΛΛ′+Σ. Great
interest in regularized estimation (Bickel & Lev-
ina, 2008a, b; Wu and Pourahmadi, 2010, Cai
and Liu, 2011 ...), Minimax optimal rates estab-
lished in Cai, Zhang and Zhou (2010), Bayesian
counterpart lacks a theoretical framework in
terms of posterior convergence rates

Objectives
A prior Π(Λ ⊗ σ2) induces a prior distribution
Π(Ω), How does the posterior behave assuming
data sampled from fixed truth? Castillo and van
der Vaart (2012) point mass mixtures, computa-
tionally inefficient due to search of huge model
space - calls for conts. shrinkage priors.
Cn : cone of covariance matrices of size p×p sat-
isfying sparsity constraints; see (A0) - (A4). We
observe yi ∼ Np(0,Ω0n), y(n) = (y1, . . . , yn) For
‖·‖2 denoting the operator norm, find minimum
sequence εn → 0 such that

lim
n→∞

EΣ0nΠn

[
‖Ωn − Ω0n‖2 > Mεn | y(n)

]
= 0

Can we achieve optimal rate of convergence εn
even when p = en

α

, 0 < α < 1?

New priors
We propose independent priors for columns of
Λ. Point mass mixture priors are widely used
but they have computational issues.

• (Ppm) λjh ∼ (1 − πh)δ0 + πhg(·), πh ∼
Beta(1, λp + 1). g(·) has Laplace like or
heavier tails, σ2 ∼ Ga(a, b), k ∼ Poiss(λ)

Propose new prior (Pcs) that are computation-
ally amenable, but statistically as efficient as
the point mass priors. Idea is to introduce
a local scale τh and a bunch of global scales
(γ1h, . . . , γph) for h th column

• (Pcs) λjh ∼ Laplace(τhγjh), τh ∼
Inverse-Ga(a, b), (γ1h, . . . , γph) ∼
Dirichlet(α/p, . . . , α/p), σ2 ∼
Ga(a, b),Poiss(λ)

Intuition behind Pcs
• Both have high concentration around

sparse vectors, high prior probability of
large subsets being close to 0.

• Pcs allows dependence among (γ1, . . . , γp)
forcing a large subset of the local scales
γj to be close to zero and thus behaving
similar to Ppm

Assumptions
(A0) Ω0n ∈ Cn are of the form

Ω0n = Λ0nΛT

0n + Σ0n , Λ0n ∈ Θ
(p,k0n)
Λ , Σ0n = σ2

0n Ip ,

There exist sequences of positive real numbers cn, sn with cn . sn, such that,

(A1) limn→∞ cnk
3/2
0n

√
sn log pn

n

√
log n = 0; k

3/2
0n

√
sn log pn

n (log n)3/2 = O(1).

(A2) Each column of Λ0n belongs to l0[sn; pn].

(A3)
∥∥∥ 1
cn

ΛT
0nΛ0n − Ik0n

∥∥∥
2

= o(k0n

√
log k0n/n).

(A4) There exists a constant σ(1)
0 such that σ(1)

0 ≤ σ2
0n ≤ cn.

Main results
• With (A0) − (A4), || · ||2 and snk0n & log pn, both Ppm and Pcs lead to a convergence rate

εn = cnk
3/2
0n

√
sn log pn

n

√
log n

• We obtain near minimax rate as with (A0) − (A4), || · ||2, with k0n = O(1), the minimax rate

is cn
√

sn log pn
n

Insights into the assumptions
• random matrix theory - “tall” and “skinny” matrices properly normalized act as approximate

isometry

• In light of (A3), a plausible mechanism generating the truth λ0jh ∼ (1− π)δ0 + πN(0, 1) with
π = s/p

• With prob. 1− e−C′k for constants C ′, C > 0∥∥∥∥1

p
ΛT

0 Λ0 − πIk

∥∥∥∥
2

≤ C
√
k
√
p
‖πIk‖2

• Hence, we expect with large probability,∥∥∥∥1

s
ΛT

0 Λ0 − Ik

∥∥∥∥
2

= o(k0n

√
log k0n/n) (A3)

s = π × p. Ap×k i.i.d. (1− π)δ0 + πN(0, 1). B = (1/s)ATA− Ik

Conclusion
• Consistent estimation even if p = O(en

α

) for α ∈ (0, 1)

• Prior concentration, prior probability of subset size very important

• Developed new shrinkage priors Pcs which achieve this

• Computation is very fast using Pcs, hence potentially useful


