Climatic Influences on Air, Soil, and Tree *Cryptococcus gattii* Populations in Vancouver Island, Canada

Background

Vancouver Island, Canada reports the world’s highest rate of human *Cryptococcus gattii* (*C. gattii*) cases. Humans incidentally inhale propagules and the fungus causes ~25 illnesses and 4 deaths per year. The goal of this study was to determine the relative importance of biophysical conditions for monthly *C. gattii* dynamics from the air, trees, and soil. The results provide insight into periods with elevated risk of contracting the disease. This information is difficult to identify from existing surveillance systems.

Results

Longitudinally sampled plots

- **Soil**
 - Warmer T° → *C. gattii* ↓
 - Higher Wind Speed → *C. gattii* ↓

- **Tree**
 - Unrelated to weather, however temporally autocorrelated

- **Air**
 - Greater Solar Radiation → *C. gattii* ↑
 - Wind speed, moderate → *C. gattii* ↑
 - Wind speed, strong → *C. gattii* ↓

Newly sampled plots

- **Soil**
 - Warmer T° → *C. gattii* ↓
 - Summer, Fall → *C. gattii* ↑
 - Temporally autocorrelated

- **Tree**
 - Warmer T° → *C. gattii* ↓
 - Greater Solar Radiation → *C. gattii* ↑
 - Higher Wind Speed → *C. gattii* ↑

Discussion

Geographic areas and periods of time with elevated temperatures decreased *C. gattii* tree isolations and soil concentrations. Collectively, our results provide insight into *C. gattii*’s life cycle. Both trees and the surrounding soil appear to act as *C. gattii* reservoirs. Wind may be a key process transferring *C. gattii* from the soil, into the air, and onto trees in the wider study area. The highest airborne *C. gattii* risk is from August-October on sunny days with moderately windy conditions. The greatest risk of contracting *C. gattii* from the soil is on relatively cool June and July summer days.

Christopher K. Uejio, Department of Geography and Program in Public Health, Florida State University, cuejio@fsu.edu, @ckuejio