Streaming Link Prediction on Dynamic Graph Streams

Introduction

Real-world **information networks** are **<u>dynamic</u>** and <u>**of massive volume**</u>. Noteworthy examples include social networks, PPI networks, communication networks, and the Web.

Link Prediction

Given a snapshot of an information network at time t, we seek to accurately predict the edges that will be added to the network during the interval from time t to a given future time t_0

Graph Stream Model

An information network can be formalized as a graph stream that receives a sequence of edges of the form $\langle EId; i, j \rangle$. At any given moment in time *t*, the edges in the stream imply a graph G(t) = (N(t), E(t)), where N(t) is the set of nodes and A(t) is the set of *distinct* edges at time *t*

• **Dynamics**: t can be infinitively large

•<u>Massiveness</u>: G(t) is too large to be safely stored even on disk for effective analysis

Can we predict potential links on massive , dynamic graph streams accurately and efficiently?

Main Idea

We consider proposing and re-examining highquality **approximations** to the state-of-the-art link prediction metrics on the massive graph stream scenario:

1.Common neighbor:

 $|\tau(i,t)\cap\tau(j,t)|$

2.Jaccard coefficient

$$\frac{|\tau(i,t)\cap\tau(j,t)|}{|\tau(i,t)\cup\tau(j,t)|}$$
3.Adamic-Ada

$$\sum_{k\in\tau(i,t)\cap\tau(i,t)} (1/\log(|\tau(k,t)|))$$

Algorithms

1. Minhashing based approximation

Consider a streaming algorithm maintaining values of each node *i*, its *minimum adjacent hash value*, v(i), and *minimum adjacent hash index*, I(i)

<u>Theorem</u>: The probability that I(i) = I(j) is exactly equal to the Jaccard coefficient between nodes *i* and *j*

2. Node-biased sampling

A *reservoir* of budget *L* is associated with each node to dynamically sample *L* incident edges of each node

Theorem: Let (i) and (j) be the fraction of nodes incident on i and j respectively, which are sampled. Then, the total number of common neighbors C_{ij} , between nodes i and j, can be estimated

$$C_{ij} = \frac{|S(i) \cap S(j)|}{\min\{\eta(i), \eta(j)\}}$$

Experiments

Real-world Datasets

- **DBLP**: a streaming co-authorship graph comprising 1,954,776 author-pairs
- Amazon Co-purchasing Network: a product co-purchasing network comprising 410,236 nodes and 3,356,824 edges

Evaluation Metrics

- Link prediction accuracy
- Link prediction cost

Experimental Results

