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Abstract

Tectonic collision between South America and Panama began at 23-25 Ma. This is
significant because the collision ultimately led to development of the Panamanian
Isthmus, which in-turn had wide ranging oceanic, climatic, biologic and tectonic
implications. Within the Panama Canal Zone, volcanic activity transitioned from
hydrous mantle-wedge derived arc magmatism to localized extensional arc magmatism
at 24 Ma, and overall marks a permanent transition in arc evolution. We interpret this
change to result from fracturing of the Panama block during initial collision with South
America. Fracturing of the Panama block led to localized crustal extension, normal
faulting, sedimentary basin formation and extensional magmatism in the Canal Basin
and Bocas del Toro. Synchronous with this change, both Panama and inboard South
America experienced a broad episode of exhumation indicated by (U-Th)/He and
fission-track thermochronology coupled with changing geographic patterns of
sedimentary deposition in the Colombian Eastern Cordillera and Llanos basin. Such
observations allow for construction of a new tectonic model of the South America-
Panama collision, northern Andes uplift and Panama orocline formation. Finally,
synchronicity of Panama arc chemical changes and linked uplift indicates onset of
collision and Isthmus formation began earlier than commonly assumed.

Introduction

Traditionally, the Isthmus of Panama is interpreted to have completely separated the
Caribbean Sea and Pacific Ocean by 3-3.5 Ma (Keigwin, 1978; O’Dea et al., 2007), and is
widely speculated to result from collision between South America and the Panama block
(Trenkamp et al., 2002; Coates et al., 2004) (Fig. 1). However, this closure date is based
primarily on the evolutionary divergence of marine organisms and therefore must be a
minimum age. Other evidence on when Isthmus formation began comes from shallowing
sequences in Panamanian and Colombian bathyal sedimentary basins at 14.8-12.8 Ma
(Duque-Caro, 1990; Coates et al., 2004) and folded-and-thrusted Upper Miocene strata in
eastern Panama (Mann and Kolarsky, 1995). These observations document that
significant contraction in eastern Panama occurred since the Middle Miocene, but do not
put a firm limit on when or how the collision between South America and the Panama
block initiated. We suggest that the collision initiated at 23-25 Ma when South America
first impinged upon Panamanian arc crust as observed by distinct changes in the
Panamanian arc chemical evolution, broad exhumation of the northern Andes and
Panama, and extensive foreland deposition in the distal Llanos basin of Colombia (Fig. 1).

Panama arc evolution within the Canal Zone
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Figure 2: INAA trace element geochemistry from the
Panama arc . A) Averaged trace element geochemistry
from different temporal and spatial groups of Panama arc
rocks. B) La/Yb vs Ta/Yb with individual samples plotted.
The sharp inflection point at 23-25 Ma indicates a
permanent change in arc chemistry. C) Ba/Yb vs Ta/Yb
with individual samples. The Canal Zone volcanic rocks
have sharply lower Ba/Yb ratios indicative of general
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Ma (Buchs et al., 2010). Wegner et al. (2011) divide arc activity into a depleted late 20 km discrimination diagram. Canal Zone rocks transition from
Cretaceous-Eocene 1nitial episode and an enriched Miocene arc. Modern magmatism in arc tholelites to extensional products after 25 Ma. Rocks
] P _ : _ g . Figure 1: A) Modern tectonic map with the location of geochemical samples in from Bocas del Toro also plot in the extensional field.
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suggested above, this structure can explain the localized zones of extension within the
Panama arc. Other options to explain exhumation and changes in arc processes in Panama i
and northern South America include: A 25-30 Ma westward increase in absolute South |
American plate motion as proposed by Silver et al. (1998), the 23 Ma fissioning of the
Farallon plate (Lonsdale, 2006), or our prefered option, combination of the above with the
collision of Panama and South America. The motion of South America is almost certainly
the driver of broad Andean tectonic trends and the 23 Ma exhumation event is observed
throughout western South America (Allmendinger et al., 1997). However, the width of the
Colombian orogenic belt inboard of Panama is approximately twice that farther south in
Ecuador. This suggests a causitive relationship. Overall, our prefered interpretation is that
South America surged westward at the end of the Oligocene and collided with Panama arc
crust. Due to arc crust unsubducibility, the Panama block detached from the Caribbean
plate and was thrust over 1t leading to the formation of the North Panama deformed belt. . 45 AN
The North Panama deformed belt and Llanos Basin form opposite verging fold and thrust | | Jay . 2 A
belts occuring =500 km on either side of the Panama-South America suture (the Atrato Ll
fault, Trenkamp, 2002) (Fig. 4). Bi-vergent orogenic float (Oldow et al., 1990) could
produce the widespread exhumation observed at 23-25 Ma during the collision initiation.
Finally, we suggest that the semi-rigid beam of Panama arc crust fractured and underwent
rotation in response to collision with South America leading to the observed zones of
extensional magmatism.
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Figure 6: Detailed geologic map of the Culebra Cut along the Panama
Canal. The map contains Miocene volcanic sills and pipes that intrude

Figure 5: Geologic map of Central Panama and the Panama Canal.

C()nCI u Sions Circles indicate locations of gravity observations into and are inter-bedded within the Canal sedimentary basin.
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