Query-based Configuration of Text Retrieval for Software Engineering Tasks

- Text Retrieval (TR) approaches are used to search information in software based on a given query, much like Google searches the web.
- To lead to good results, TR approaches need to be configured for the software system and the task they are supporting.
- Current approaches for automatic TR configuration apply a single TR configuration for all queries. This leads to suboptimal results.

Table 1. Percentage of queries per systemfor which QUEST improved, preserved,and worsened the retrieval performancecompared to the best TR approach

System	Improved	Preserved	Worsened
apache-nutch-1.8	29.2%	66.7%	4.2%
apache-nutch-2.1	38.5%	41.0%	20.5%
bookkeeper-4.1.0	30.6%	53.2%	16.1%
commons-math3-3.0	19.4%	69.4%	11.1%
derby-10.9.1.0	25.3%	58.7%	16.0%
mahout-0.8	25.0%	72.7%	2.3%
openjpa-2.0.1	42.2%	40.0%	17.8%
pig-0.11.1	33.8%	43.8%	22.5%
pig-0.8.0	28.6%	39.7%	31.7%
solr-4.4.0	30.1%	47.0%	22.9%
tika-1.3	37.8%	37.8%	24.4%
zookeeper-3.4.5	10.4%	76.4%	13.2%
Average	29.2%	53.9%	16.9%

- We present the first approach, *QUEST*, bringing TR configuration selection to the *query level* in software engineering.
- **QUEST** recommends the best TR configuration for each given query; it uses a *supervised machine learning approach* which determines the TR configuration that performs the best for each query based on its *properties*.
- We evaluated QUEST in the context of *feature and bug localization* and found that it is able to recommend one of the top three TR configurations for a query

Table 2. Top-k recommendation accuracyachieved by QUEST when using within-and cross-project training.

Training strategy	System	Top 1	Top 2	Top 3
	apache nutch 1.8	57%	75%	86%
	apache nutch 2.1	39%	62%	69%
	bookkeeper 4.1.0	23%	58%	69%
	commons-math3 3.0	62%	75%	79%
	derby 10.9.1.0	31%	53%	73%
	mahout 0.8	53%	70%	78%
Within-project	openjpa 2.0.1	39%	70%	73%
	pig-0.8.0	20%	34%	48%
	pig-0.11.1	29%	45%	58%
	solr-4.4.0	22%	39%	56%
	tika 1.3	53%	63%	65%
	zookeeper-3.4.5	30%	45%	70%
	Average	38%	57%	69%
Cross-project		13%	24%	35%

with a 69% accuracy, on average.

• We compared the results obtained with the configurations recommended by QUEST for every query with those obtained using a single TR configuration for all queries in a system and in the entire dataset. We found that using QUEST we obtain better results than with any of the considered TR configurations. **Table 3.** Percentage of queries for which
QUEST improved, preserved, and
deteriorated the retrieval performance
compared to each baseline.

Basolino	Improved (med_improv_)	Prosorvod	Deteriorated (med. deter.)
Dasenne	mproved (med. mprov.)	rieserveu	Deteriorated (med. deter.)
E1C1	27.8% (-84)	53.1%	19.1% (233.5)
E2C4	67.8% (-367)	18.2%	14.0% (763)
E2C3	71.9% (-412)	16.6%	11.5% (159)
E5C1	51.5% (-42.5)	21.4%	27.1% (75)
E6C1	35.7% (-48)	31.0%	33.3% (61)
E6C2	41.8% (-60.5)	29.0%	29.2% (66)
E3C1	44.6% (-40)	25.5%	29.9% (66)
E4C3	41.3% (-53)	30.5%	28.2% (99)
Average	47.8% (-138.4)	28.2%	24.0% (190.3)

Sonia Haiduc | Dept. of Computer Science | shaiduc@cs.fsu.edu