Instructional Change in Undergraduate STEM Christine Andrews-Larson, School of Teacher Education & FSU-Teach

- Research Question: How do undergraduate mathematics instructors implement student-centered instructional materials?
- Data Sources:
 - video recordings of 3 instructors at 3 tertiary institutions teaching a 4-day, student-centered instructional unit on span and linear (in)dependence in
- Findings: Year 1 Implementation
 - Total time spent on the instructional sequence was similar across instructors;
 allocation of time varied across instructors
 - Four structures for eliciting and
 building on student thinking in
 whole class discussion identified:
 - 1. Getting students to talk
- introductory linear algebra, two years in a row
- Audio recordings of interviews
 with these instructors before,
 during, and after the unit
- Methods of Analysis:
 - Coded video data for use of
 instructional time according to
 small group work, whole class
 discussion, and lecture
 - Coded whole class discussions
 for ways in which instructors
 elicited and built on student
 thinking in whole class
 discussion
- Findings: Challenges
 - Year 1: Instructors reported focusing much of their time and attention on pacing, alignment of student-centered instructional materials with course texts, and grouping students and getting them to talk in class

- 2. Getting students to explain their thinking
- Using student ideas as a basis for instructor explanation or formalization
- 4. Using student ideas as the basisfor a new mathematical questionor task
- Preliminary Year 2 Findings
 - Observed increase in eliciting and building on student thinking (structures 2-4)

Instructor	Approx #	# of student	# of student	Discussion
	of student	approaches	approaches	structures
	groups	represented	<i>explained</i> by	observed
		publicly	students in	
			WCD	
C-2013	14	14	0	1
C- 2014	10	10	4	2,3,4
B-2013	2	2	2	2,4
B-2014	5	5	4	2,3,4
A-2013	8	8	4	2,3
A-2014	8	8	1	2,3

 Year 2: Instructors' talk focused much more on the ways in which students were thinking about the mathematics

150

200

250

Instructor C Instructor A SGW WCD Lecture

100

50

0

- Implications:
 - Informs appropriate trajectories
 for instructors learning to
 implement student-centered
 instruction

Andrews-Larson (FSU), Johnson (Virginia Tech), and Keene (North Caroline State University) applied for and received a three-year collaborative NSF grant to support the next stage of this work beginning August, 2014. The grant is entitled *Teaching Inquiry-Oriented Mathematics: Establishing Supports* (TIMES).

For more information, contact cjlarson@fsu.edu

300