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* Protein-ligand binding can modulate the conformational landscape of a

Ligand
or other binders

Analyzer
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* In the analyzer a flow of buffer
gas pushes ions against an
electric field towards the exit

Research in the Bleiholder Group: lon Mobility-Mass Spectrometry
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Study on the Structure and Oligomerization of Chemokines
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2. Objective/Problem

hetero-oligomer monomer

Heart disease and cancer metastases are the leading cause
of death and closely associated with dysfunction of
Chemokines.

Chemokines are a family of small proteins that regulate where
cells migrate into.

The molecular mechanism of how chemokines regulate cell
migration is poorly understood.
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-  We use IM-MS to trap distinct
conformations of chemokines
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3. Results

* Our target is CCL5 a member of the chemokine family
and strongly associated with atherosclerosis (primary
cause of heart disease).
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* |IM-MS data show that complexiation of |-S, one of the
ligands for CCLY5, induces dimerization but also
modulates the structural diversity of dimers as well as
monomers, suggesting the mechanism of allosteric
control of CCL5 oligomerization by I-S.

One major goal of our group is to improve IM-MS
technology for use in structural biology (Jointly with

Bruker Daltonics).

Motivation

High throughput structural analysis requires a fast algorithm method that can accurately
approximate the Collision Cross Section (CCS) of molecules for a variety of buffer gases’
polarity and with a variety molecular charge distributions (MCD). Evaluation of the
accuracy and the reliability of the current PSA method is pursued here.
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distribution in various polarized drift gases.
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