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1. INTRODUCTION

Data: (Xi, Y i)ni=1, where Xi is a p-dimensional predictor and Y i is a one-dimensional
response.
Challenge: p� n.
Sparsity assumption: define

D = {j : F (y | X) functionally depends on Xj for some y},

where F (y | X) is the conditional cumulative probability function of Y . Then we assume
that |D| � p.
Variable selection: Aim to detect D exactly.
- Penalized methods, such as Lasso (Tibshirani (1996)) and SCAD (Fan and Li (2001)),
among others.

- Numerically challenging.

2. VARIABLE SCREENING

Variable screening: Aim to detect a set S such that |S| � p and D ⊂ S.
- Rank the predictors marginally;
- Computationally efficient;
- Penalized methods can be applied to the reduced set S as a second-step analysis to
identify D exactly.

SURE screening property: a variable screening method enjoys the SURE screening prop-
erty if it can identify S.

Our goal: develop a screening method that is:
- robust: it should require minimum distribution assumption so that it can handle heavy-
tailed and/or skewed predictions that often emerge in practice;

- model-free: it should enjoy the SURE screening property without specifying a model
between Y and X so one could apply any penalized method to detect D in the second
step;

- unified: it can be applied to a wide range of problems including regression and classifi-
cation problems;

- invariant: the screening results should remain the same if we transform the variables
marginally.

3. EXISTING METHODS

•Many screening methods have been proposed for different models;
• Two most robust methods:

- Distance correlation screening (DCS): ranks the importance of each predictor by its
distance correlation (Szélely, Rizzo, M. L. and Bakirov (2007)) with the response. The
predictors with large distance correlations are kept.

- The Kolmogorov filter (K-filter): for a binary classification problem, ranks the impor-
tance of each predictor by the Kolmogorov-Smirnov test statistic. The predictors with
large test statistics are kept.

Distance correlation screeing The Kolmogorov filter
Model-free Yes Yes
Distribution-free No Yes
Unified Yes No
Invariant No Yes

4. OUR METHOD: The FUSED KOLMOGOROV FILTER

The fused Kolmogorov filter, involves slicing the response and two levels of fusion:

• Step 1: Slicing
Define a partition

G = {[al, al+1) : al < al+1, l = 0, · · · , G− 1, and ∪G−1j=1 [al, al+1)\{a0} = R},

where a0 = −∞ and aG = ∞. Each [al, al+1) is called a slice. Then Define a random
variable H ∈ {1, · · · , G} such that H = l + 1 if and only if Y is in the l’th slice.

• Step 2: Fusion within a slicing scheme
Given a partition G, we calculate

K̂G
j = max

(l,m)
sup
y
|F̂j(x | Hj = l)− F̂j(x | Hj = m)|,

where F̂j(x | H = l) =
1

nl

∑
H i=l 1(X

i
j ≤ x), and nl is the sample size within the lth slice

and Hi = l if Y i is in the lth slice.

• Step 3: Fusion between slicing schemes
Repeat Steps 1–2 with N different slicing schemes, Gi for i = 1, . . . , N . Then we let

K̂j =

N∑
i=1

K̂Gi
j .

• Step 4: Find Ŝ

Set Ŝ = {j : K̂j > νn}, where νn is a pre-defined positive constant.

Remark 1 1. On the population level, if Xj is independent of Y , then Kj = 0;

2. On the population level, if (Y,Xj) is bivariate normal, then Kj is a monotone function of
the Pearson correlation between Y and Xj.

3. It is recently observed that the fusion between different slicing schemes greatly im-
proves the efficiency of a sufficient dimension reduction method (Cook and Zhang
(2014)). But our method is the first one that applies this method for high-dimensional
data.

4. The fused Kolmogorov filter is invariant under univariate monotone transformations.

Theorem 1 Under mild assumptions, if log p = nξ for some 0 < ξ < 1, then the fused
Kolmogorov filter enjoys the SURE screening property with a probability tending to 1.

Remark 2 Our theorem does not impose any distribution assumption on Y or X;

5. SIMULATIONS

In all simulations, n = 200, p = 5000.
Model 1 (Linear transformation model) log Y = 2.8X1− 2.8X2 + ε, where X ∼ N(0,Σ) with
Σ = CS(0.7) and ε ∼ N(0, 1).
Model 2 (Additive model): Y = 4X1 + 2 tan(πX2/2) + 5X2

3 + ε, where Xj ’s follow Unif(0, 1)
independently and ε ∼ N(0, 1) is independent of X.
Model 3 (Heteroskedastic regression model): Y = 2(X1+0.8X2+0.6X3+0.4X4+0.2X5) +
exp(X20 +X21 +X22)ε, where ε ∼ N(0, 1), and X ∼ N(0,Σ) with Σ = AR(0.8).
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Figure 1: Simulation results for Models 1, 2 & 3 (from left to right) based on 500 replicates.
We report the minimum number of predictors we need to keep so that all the important
predictors are kept. The blue dashed line is the truth. The black line denotes the Kol-
mogorov filter based on 3–6 slices and the fusion of all the slicing schemes. The red line
is the results given by distance correlation screening.

6. REAL DATA

• The Tecator dataset was collected by Tecator Infratec Food and Feed Analyzer working
in the wavelength range 850–1050 nm by the Near Infrared Transmission (NIT) princi-
ple. The predictors are 100 channel spectrum of absorbances. The response is the
percentage of fat in finely chopped meat.
• After deleting 2 outliers, we randomly split the dataset to form training sets of size 215

and testing sets of size 41.
• In addition to the 100 predictors in the original dataset, we added 4900 independent

noise variables following the Cauchy distribution.
We compare five successful screening methods in the literature with the fused Kolmogorov
filter.

Kolmogorov DCS NIS SIS QA ELS
α = 0.5 α = 0.75

True predictors 99.6 75.4 77.3 11.7 45.4 42.2 6.24
(0.06) (0.44) (0.28) (0.27) (0.56) (0.43) (0.14)

Table 2: Comparison of the screening methods on the tecator dataset. We report the
number of true predictors that are preserved after the screening step. The numbers are
average over 100 replicates. Standard errors are in parentheses.

We further combine the three methods that kept the most true predictors with random
forest to compare the prediction accuracy.

K-RF DCS-RF NIS-RF
Average MSE 0.097 0.102 0.103

(0.009) (0.010) (0.010)

Table 3: Comparison of the prediction performance on the tecator dataset. The numbers
are average over 100 replicates. Standard errors are in parentheses. A paired t-test
shows that K-RF is significantly better than DCS-RF and NIS-RF, with p-values less than
1× 10−5.
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