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Rechargeable Sodium Ion Batteries: New Cathode Cr2O5
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New Cathode Cr2O5, was synthesized by pyrolyzing CrO3.

The projection-MATPASS pulse sequence was employed to acquire the 
23Na spectra with highest resolution. At different stages of charge/-
discharge,3 components are identified: Na in SEI around 0 ppm, and Na 
in crystalline and in amorphous NaxCr2O5 phases, respectively.

(a) Cr8O21 cathode delivers a high 
specific capacity of ~ 325 mAh/g, 
while Cr2O5 offers ~ 245 mAh/g (b) 
Similarity in the peak position 
between the two cells using chro-
mate electrodes sintered for 2 
hours and 10 hours, respectively, 
indicates that the major redox reac-
tion is similar.

Gradual capacity fading was 
observed at the beginning and the 
capacity was stabilized at 120 
mAh/g for long term cycling, which 
is comparable to most promising 
Na ion battery systems. 

(a) Internal charge transfer resistance increases as cycle proceedes. The greater charge transfer resistance 
is likely due to the loss of electric contact among chromium oxide particles in the electrode as they were 
broken down with cycling. (b) Solid-state 23Na NMR of Cr2O5 shows residual Na built up within the chromium 
oxide electrodes over multiple cycles. (c) The powder X-ray diffraction patterns of the chromate electrode 
after 1 cycle and 50 cycles reveal the formation of crystalline CrO3 with electrochemical cycling. After 1 cycle, 
the chromium oxide electrode becomes structurally disordered. After 50 cycles, two major diffraction peaks at 
2θ ~ 22o and 26o are observed along with other minor components, which are identified as crystalline CrO3. 

In-situ & ex-situ solid-state NMR is a powerful tool for understanding how energy mate-
rials work, why they fail, and guide material discovery.

8a 16d 16c 8a 16d 16c

8a+16d
16c

8a+16d
16c

In-situ NMR monitors structural & dynamical changes in real time and catches possible 
transient processes.

Static 1H-X Low-E proble has been designed by 
Peter Gořkov for in-situ NMR studies of electro-
chemical cells.
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17O NMR is a powerful tool to probe oxygen loss, which is one of the possible reasons 
that Li-rich cathode materials suffer from performance decay and it is important to 
understand the structural change with electrochemical cycling. 

* *
* *

*

*
*

* spining side bands

Key et al., J. Am. Chem. Soc. 131, 9239 (2009)
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In-situ NMR of Li Ion Batteries
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The particle size of LTO/LiAc varies, and LTO/Li2CO3 parti-
cles are more uniform and tend to aggregate.

Different rate performance and overpotential for LTO/LiAc 
and LTO/Li2CO3
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At different charge/discharge 
stages, Li ions migrate 
between 8a, and 16c sites.

1H spectrum provides  the amount of H in pristine samples. We applied direct polarization 7Li and 1H-7Li 
cross-polarization NMR to distinguish Li in the bulk from those on the surface.

Based on NMR and electrochemical data, migration of Li ions from 8a to 16c site to certain extent was sup-
pressed in LTO/Li2CO3 at fast discharge rates, which may be the reason for the difference in electrochemistry 
of LTO made from Li2CO3 and LiAc, respectively. 
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In-situ NMR spectra of the LiNi0.5Mn1.5O4/Li bag cell battery.

Spinel-type Li4Ti5O12 has been used as anodes in Lithium ion batteries (LIBs) because of its excellent stability and reversibility. Variation in synthesis methods as well as Li sourses 
leads to significant diffrence in electrochemical performance of LiBs. 
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High-resolution NMR is achieved by advanced methods, allowing the identification of 
structural details.

Na Ion Batteries: new cathode material
Cr2O5

In-situ SSNMR spectroscopy of Li ion
batteries

Introduction: Energy Storage Materials & Solid-State NMR

Lithium Ion Batteries: voltage fading &
capacity decay

Cr2O5/Na
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Solid Oxide Fuel Cells: ion dynamics
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Important properties of energy materials are closely related to the electrode structure. In our 
research, we employ advanced solid-state NMR to investigate the following questions: 
(1) charge carriers in ionic conductors for solid oxide fuel cells.
(2) local structural changes and O loss in  battery electrodes.
(3) reaction mechanism of Na ion batteries that employ chromium oxides as cathodes.
(4) in-situ NMR monitoring of battery cycling.
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29Si spectra showed that the content of α-SrSiO3 phase 
decreases gradually and β-Na2Si2O5 phase dominates after 
SNS20. The phase, Sr(Na)SiO3, doesn’t further increase 
after SNS20.

23Na spectra showed that segregated phases (Sr(Na)SiO3 
and β-Na2Si2O5) exist. Large CQ (quadrupolar couping 
constant) for β-Na2Si2O5 implies disordered structure.

17O spectra showed that the ratios between non-bridging 
oxygen and bridging oxygen sites in Sr(Na)SiO3 decreases. 
As doping level of Na increases, β-Na2Si2O5 becomes the 
major phase in SNS.

In order to achieve higher resolution of 17O spectra, two-dimensional mul-
tiple quantum  magic-angle  spinning  (MQMAS)  NMR  experiments 
were  implemented  to  separate  quadrupolar  coupling  effects from che-
mical shift interactions. 

(a) The increase in temperature allows faster Na ion motions as 
evidenced by narrower linewidth. However, Na ion motion is reduced 
upon further heating. (b) 17O NMR  shows little or no change in the peak 
shape or width as the temperature increases.
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Solid-state NMR revelas the chemical phase evolution as Na content 
increases and confirms that Na+ motion is responsible for high ionic 
conductivity.

Conclusions
High-resolution solid-state NMR probes the local environment of Li and Na function-
al ions, directly follows the loss of O in electrodes, and investigates ion dynamics.

Capacity decay

Voltage fade


