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1. Envelopes in multivariate linear model

Multivariate linear model of Yi ∈ Rr on Xi ∈ Rp:

Yi = α + βXi + εi, i = 1, . . . , n, (1)

where εi is i.i.d. error with mean 0 covariance Σ > 0, and is independent of Xi.
Goal: efficient estimation of β ∈ Rr×p and Σ ∈ Rr×r.
Response Envelope model: Suppose there is a subspace E ⊆ Rr, and let PE and QE = Ir −PE
denote projections onto E and E⊥, such that

QEY|X ∼ QEY, QEY ⊥⊥ PEY|X. (2)

•PEY: material part
•QEY: immaterial part

Equivalently:
span(β) ⊆ E , Σ = PEΣPE + QEΣQE . (3)

The envelope is then the smallest such subspace E .
Parameters in the envelope regression:

β = Γθ, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , (4)

where Γ ∈ Rr×u is a semi-orthogonal basis for the envelope EΣ(β), Γ0 ∈ Rr×(r−u) is the orthog-
onal completion of Γ, θ ∈ Ru, Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u).

2. An example: Cattle data from Kenward (1987)

•Compare two treatment for the control of the parasite
• 30 cows were randomly assigned to each treatment
•Weights were measured at weeks 2, 4, ..., 18, 19

The model is Yi = α+βXi+εi, where Yi ∈ R10 is the weight profile of each cow and Xi ∈ {0, 1}
indicating two groups.
• Standard estimation: β̂OLS = Y1 −Y0.
• Envelope estimation: β̂Env = Γ̂θ̂ estimated via maximizing the likelihood function.
•Comparing two methods: the bootstrap standard error of each regression coefficient β̂Env,k is

2.6 to 5.9 times smaller than that of β̂OLS,k for k = 1, . . . , 10.
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Figure 1: Visualize the working mechanism of envelope regression: a simpler regression
problem of the bivariate response Y = (Y6, Y7) on the binary predictor X of the cattle data.

3. Envelope models and methods for tensor regression

Motivations:
1. Data in the form of tensor (multidimensional array) are becoming more and more common in

both scientific and business applications, especially in brain imaging analysis.
2. Envelope method is a new and fast evolving tool for dimension reduction and improving effi-

ciency in multivariate parameter estimation. Substantial gains are achievable by incorporating
envelope method to classical regression problems such as OLS, PLS, RRR, GLM, etc.

3. We propose a parsimonious tensor envelope regression of a tensor-valued response on a
scalar- or vector-valued predictor. It models all voxels of the tensor response jointly, while ac-
counting for the inherent structural information among the voxels. Efficiency gain is achieved
with improved interpretation.

Some tensor notations:
•Multidimensional array A ∈ Rr1×···×rm is called an m-th order tensor.

•Mode-k matricization turns a tensor A into a matrix A(k) ∈ Rrk×(
∏

j 6=k rj).

•Mode-k product of a tensor A and a matrix B ∈ Rd×rk is defined as A ×k B ∈
Rr1×···×rk−1×d×rk+1×···×rm.
•We write A = JC;B(1), . . . ,B(m)K for the Tucker decomposition, which is defined as A =

C ×1 B(1) ×2 · · · ×m B(m), where C ∈ Rd1×···×dm is the core tensor and B(k) ∈ Rrk×dk,
k = 1, . . . ,m, are factor matrices.

Tensor response regression
•Yi ∈ Rr1×···×rm tensor-valued response on Xi ∈ Rp vector-valued predictor, i = 1, . . . , n i.i.d.

samples.
• εi ∈ Rr1×···×rm error tensor with mean 0 and covariance cov{vec(ε)} = Σ of size (

∏m
k=1 rk)

⊗2.
•We assume a separable Kronecker covariance structure: Σ = Σm ⊗ · · · ⊗Σ1.
• Tensor linear model:

Yi = B×(m+1) Xi + εi, i = 1, . . . , n. (5)

• Vectorized model: vec(Yi) = BT
(m+1)

Xi + vec(εi).

•Goal: estimating B ∈ Rr1×···×rm×p. For example, a standard way is fitting individual elements
of Y on X one-at-a-time.

Tensor envelope: TΣ(B) = EΣm
(B(m)) ⊗ · · · ⊗ EΣ1

(B(1)) is the intersection of all reducing sub-
spaces E of Σ = Σm⊗· · ·⊗Σ1 that contain span(BT

(m+1)
) and can be written as E = Em⊗· · ·⊗E1,

where Ek ⊆ Rrk, k = 1, . . . ,m.
Tensor envelope parameterization:
• Let (Γk,Γ0k) ∈ Rrk×rk be an orthogonal matrix such that span(Γk) = EΣk

(B(k)), Γk ∈ Rrk×uk.
•Regression coefficient tensor

B = JΘ;Γ1, . . . ,Γm, IpK for some Θ ∈ Ru1×···×um×p

•Covariance matrices
Σk = ΓkΩkΓ

T
k + Γ0kΩ0kΓ

T
0k, k = 1, . . . ,m

• Total number of parameters is reduced by

p{
m∏
k=1

rk −
m∏
k=1

rk}

4. Estimation

1. Initialize B(0) and Σ(0) = Σ
(0)
m ⊗ · · · ⊗Σ(m) from standard methods.

2. [Numerical Grassmannian optimization] Estimate envelope basis {Γk}mk=1 based on B(0) and
Σ(0). The 1D envelope algorithm (Cook and Zhang 2014) is used to obtain a stable and

√
n-

consistent envelope basis estimates.
3. [Analytical solutions] Estimate other parameters Θ, {Ωk}mk=1and{Ω0k}mk=1 based on {Γk}mk=1.
4. [Analytical solutions] Obtain B and Σ from the envelope parameterization.

5. Some numerical results

Figure 2: Comparison with OLS: The true and estimated regression coefficient tensors under
various signal shapes and signal-to-noise ratios (SNR).

5.1 Simulations
To visualize the regression coefficient tensor B and its estimators, we consider the following
matrix-valued (order-2 tensor) response regression model,

Yi = BXi + σ · εi, , i = 1, . . . , n,

Xi is either 0 or 1; εi follows a matrix normal distribution with covariance ‖Σ1‖F = ‖Σ2‖F = 1,
σ > 0 controls the signal-to-noise-ratio (SNR) Yi, εi and B all have the same dimension 64× 64

Sample size is small: n = 20

5.2 ADHD data analysis
285 combined ADHD subjects and 491 normal controls
comparing two groups after adjusting for age and sex (i.e. number of predictors p = 3)
downsized MRI images from 256× 198× 256 to 30× 36× 30

B has the dimension 30× 36× 30× 3⇒ 97, 200 coefficients

Figure 3: ADHD Coefficients. Top row: u1 = u2 = 10 and u3 varies as {1, 2, 10, 20}, where
u1 = u2 = u3 = 10 is selected by BIC if we force the three dimensions to be the same. Bottom row:
(u1, u2, u3) varies as {(8, 9, 1), (9, 10, 2), (10, 11, 3), (30, 30, 36)(OLS)}, where (u1, u2, u3) = (9, 10, 2)
is selected by BIC.

Figure 4: ADHD P-value maps. Red regions represent p < 0.05.
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