1. Envelopes in multivariate linear model

Multivariate linear model of Y; € R" on X, € R?:

Y, =a+08X,+e€,i1=1,...,n, (1)

where g; is I.1.d. error with mean 0 covariance X > 0, and is independent of X.

Goal: efficient estimation of 3 € R"™*P and X € R"*".

Response Envelope model: Suppose there is a subspace £ C R, and let P¢ and Q¢ =1, — Pg¢
denote projections onto £ and £+, such that

QeY[X~QeY, QgY LPY|X. (2)
e Pc,Y: material part
e QcY: immaterial part
Equivalently:
span(B) C &£, X =PegXPe+ QeXQe. (3)

The envelope is then the smallest such subspace €£.
Parameters in the envelope regression:

B3=Tr0, T=ror! +rQr!, (4)

where T" € R"*% s a semi-orthogonal basis for the envelope £x:(3), T’y € R"*("=1) is the orthog-
onal completion of T', 8 € R%, 2 € R¥*% and Q € RIr—wx(r—u),

2. An example: Cattle data from Kenward (1987)

e Compare two treatment for the control of the parasite

e 30 cows were randomly assigned to each treatment

e Weights were measured at weeks 2, 4, ..., 18, 19

The model is Y; = a+ BX;+¢;, where Y; € R is the weight profile of each cow and X; € {0,1}

indicating two groups.

e Standard estimation: Bors = Y1 — Y

e Envelope estimation: BEDV = T'6 estimated via maximizing the likelihood function.

e Comparing two methods: the bootstrap standard error of each regression coefficient B\En\,,k IS
2.6 to 5.9 times smaller than that of Gog; for k =1,..., 10.
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Figure 1: Visualize the working mechanism of envelope regression: a simpler regression
problem of the bivariate responseY = (Y, Y7) on the binary predictor X of the cattle data.

3. Envelope models and methods for tensor regression

Motivations:

1. Data in the form of tensor (multidimensional array) are becoming more and more common in
both scientific and business applications, especially in brain imaging analysis.

2. Envelope method is a new and fast evolving tool for dimension reduction and improving effi-
ciency in multivariate parameter estimation. Substantial gains are achievable by incorporating
envelope method to classical regression problems such as OLS, PLS, RRR, GLM, etc.

3. We propose a parsimonious tensor envelope regression of a tensor-valued response on a
scalar- or vector-valued predictor. It models all voxels of the tensor response jointly, while ac-
counting for the inherent structural information among the voxels. Efficiency gain is achieved
with improved interpretation.
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Some tensor notations:
e Multidimensional array A € R *"m s called an m-th order tensor.

e Mode-k matricization turns a tensor A into a matrix A, € RV L),

e Mode-k product of a tensor A and a matrix B € R%"t js defined as A x;, B ¢
erx---xm_lxdxm+1x---xrm_

e We write A = [C:BW, ..., B("™)] for the Tucker decomposition, which is defined as A =
C x1 BY x5 -+ %, B, where C € R%>**dn s the core tensor and B*¥) ¢ R,
k=1,...,m, are factor matrices.

Tensor response regression

e Y; € R"'* " *"m tensor-valued response on X, € RP vector-valued predictor, i = 1,...,n i.i.d.
samples.

o g; € R XTm grror tensor with mean 0 and covariance cov{vec(e)} =  of size ([]}- r)%>.
e We assume a separable Kronecker covariance structure: X =3, ® - - - ® 3.
e Tensor linear model:

Yi:BX(m+1>Xi+€ia 1=1,....,n. (5)

e Vectorized model: vec(Y;) = B<Tm+1>XZ- + vec(g;).

e Goal: estimating B € R"**"*P_ For example, a standard way is fitting individual elements
of Y on X one-at-a-time.

Tensor envelope: Tx(B) = &y (B(,;,)) ® --- @ &x,(Byy)) is the intersection of all reducing sub-
spaces £ of X = 3, ®- - - ® X that contain Span(B<Tm+1>) and canbe writtenas £ = &, ® - - ® &,
where & C R k=1,...,m.
Tensor envelope parameterization:
o Let (I'y, ') € R™" be an orthogonal matrix such that span(I'y) = Ex, (B,), T'), € R *H
e Regression coefficient tensor

B=[O:;T,...,T';,,I,)] forsome ® € RU17*Um>P
e Covariance matrices

>, =0 TL + T QT k=1,...,m

e Total number of parameters is reduced by

p{]]re— 117
k=1

k=1

4. Estimation

1. Initialize B and =0 = 2% & ... @ 507 from standard methods.
2. [Numerical Grassmannian optimization] Estimate envelope basis {I';.}}! , based on B0 and

»(0). The 1D envelope algorithm (Cook and Zhang 2014) is used to obtain a stable and /n-
consistent envelope basis estimates.

3. [Analytical solutions] Estimate other parameters ©, {2} and{;}7L , based on {T';}}" ;.
4. [Analytical solutions] Obtain B and X from the envelope parameterization.

5. Some numerical results

True signal OLS Envelope Envelope Envelope
20
60
20 4060 SNR=0.01 SNR=0.01 SNR =0.1 SNR =1
20 p‘|ﬂ'L | ‘i*
o + BN +
60 | s 8

20 4060 SNR=001 SNR=001 SNR=01 SNR=0.1

20 e s n (S

o ® | 8 |

60 MIHES DS
20 4060 SNR=0.01 SNR=001 SNR=01 SNR=0.1

AN . - Il =
0 | HE

20 4060 SNR=001 SNR=001 SNR=01 SNR=01 SNR-=1 SNR = 1

e B s

...,l " oo
o B - e siches

1l
P

Figure 2: Comparison with OLS: The true and estimated regression coefficient tensors under
various signal shapes and signal-to-noise ratios (SNR).

5.1 Simulations

To visualize the regression coefficient tensor B and its estimators, we consider the following
matrix-valued (order-2 tensor) response regression model,

Y, =BX,+0-€, ,i=1...,n,

X; is either 0 or 1; ¢; follows a matrix normal distribution with covariance ||3||F = ||32o||F = 1,
o > 0 controls the signal-to-noise-ratio (SNR) Y, ¢; and B all have the same dimension 64 x 64

Sample size is small: n = 20

5.2 ADHD data analysis

285 combined ADHD subjects and 491 normal controls

comparing two groups after adjusting for age and sex (i.e. number of predictors p = 3)
downsized MRI images from 256 x 198 x 256 to 30 x 36 x 30

B has the dimension 30 x 36 x 30 x 3 = 97, 200 coefficients

Figure 3: ADHD Coefficients. Top row: u; = uy = 10 and us varies as {1,2,10,20}, where
u1 = uo = ug = 10 is selected by BIC if we force the three dimensions to be the same. Bottom row:
(uy,u9,us) varies as {(8,9,1), (9,10,2), (10,11, 3), (30,30,36)(OLS)}, where (uy,us, us) = (9,10, 2)
is selected by BIC.

Figure 4: ADHD P-value maps. Red regions represent p < 0.05.
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