Skip to main content

Chemicals & Pharma

Name Investigator Tech ID Licensing Manager Name Micensing Manager Email Description Tags 1-Clik License
Method to Identify the Molecular Structure of Large Biomolecules via IM/MS Christian Bleiholder, Ph.D. 17-008 Garrett Edmunds <p>This method uses data derived from Ion Mobility-Mass Spectroscopy (IM/MS) to computationally decipher molecular structures of proteins, protein assemblies, and protein-small molecules interactions.</p> <p><span style="text-decoration: underline;"><strong>Advantages</strong></span></p> <ul> <li>Enables high-throughput large-scale systematic fragment-based drug discovery</li> <li>Requires a fraction of the sample amounts and time</li> <li>Uses systems already available to most pharmaceutical and therapeutics companies.</li> </ul> <p><strong><span style="text-decoration: underline;">Introduction and Applications</span></strong></p> <p>This technology has the potential to revolutionize the field of drug discovery, especially fragment-based drug discovery, by elucidating the molecular structure of biomolecules and any bound ligands with high fidelity. </p> <p>Currently, structural characterization in drug discovery is often undertaken with techniques such as x-ray crystallography, nuclear magnetic resonance, or cryo-EM. These traditional methods require significant sample amounts, purified samples, and are poorly suited for high-throughput screening assays. Further, many potentail targets are not amenable to structural characterization by these methods, including, for example, the soluble protein assemblies implicated as toxic agents in Alzheimer's or Parkinson's diseases.</p> <p>In contrast, the current method exhibits sufficient sensitivity, sample-throughput, and dynamic range to enable the high-throughput, large-scale systemic screening of small molecule-target interactions. Additionally, the samples can be studied in a manner that more closely mimics their natural conditions, including flexible branches and glycan moieties that other methods often miss.</p> <p><span style="text-decoration: underline;"><strong>The Technology</strong></span></p> <p>The biomolecules of interest are analyzed in a few minutes via IM/MS. The output is then analyzed computationally, providing structural characterization. The program can be modified to work with in-house supercomputers or with cloud-based computing services, such as Amazon's AWS.</p> <p> </p> <p><span>Click here to watch an interview with Dr. Bleiholder: <span class="fa fa-caret-square-o-right"></span><span class="fa fa-blind"></span><span class="fa fa-check-circle"></span><span class="fa fa-hand-o-right"></span><a href=""></a></span></p> Drug discovery,fragment based drug discovery,computational chemistry
Polyelectrolyte Drying Agents Dr. Joseph Schlenoff 21-026 Garrett Edmunds <p><span>This novel anhydrous polyelectrolyte complex can be used as an effective drying agent for removing water from solvents and gases. It can be reactivated at low temperatures, Drying agents, including calcium sulfate, molecular sieves, silica gel, and more, are often used in industrial applications to remove water from liquids and gases where moisture-control is important. Many industrial drying agents can reversibly absorb water, meaning they can be “reactivated” through heating under a vacuum. Often, the temperatures – and, therefore, energy – required to reactivate these drying agents are high, in excess of 200 °C or 300 °C. The present invention is a polyelectrolyte complex (PEC) and is an effective drying agent, performing as well as commonly available agents such as molecular sieves and Drierite in acetonitrile, tetrahydrofuran, and toluene. PEC can be regenerated at lower temperatures, with complete water loss at about 120 °C, and is stable up to 400 °C. PEC is made of positively- and negative-charged polymers and is easily synthesized from readily available, low-cost starting materials.</span></p> <p><span>Key Words :polymers, environmental remediation, drying agent, desiccant, polyelectrolyte</span></p>
Single-Ion Conductor for Li-ion Batteries Dr. Justin Kennemur and Dr. Daniel Hallinan 22-003 Garrett Edmunds <p><span>The present invention is a blend of a low molecular weight polymer with polyelectrolyte polymer having a precisely fixed anionic motif. This material can be used as to create efficient, highly conductive solid-state batteries with low internal resistance. Solid Polymer Electrolytes (SPEs) are materials that can be used to replace the reactive organic solvents used in lithium-ion batteries. SPEs have drawbacks which prevent its wide adoption, such as low comparative conductivities and propensity to develop shorts. Single Ion Conductors (SICs) can overcome these issues by anchoring the negatively charge ion and allowing only the positively charged ion – typically Lithium ions – the mobility to carry the charge. The present material precisely controls the spacing of the negative ions on the polymer background. This material shows excellent ionic conductivity and has transference near unity.</span></p> <p> </p> <p><span>Key Words : Polymers, Energy Storage, Li-ion battery, solid-state conductor, single-ion </span>conductor</p>
Photochemical Synthesis of Polyaromatic Hydrocarbons (PAHs) for Modern Next-gen Electronic Display Dr. Igor Alabugin 22-007 Garrett Edmunds <p><span>Pyrene and its derivatives are Polyaromatic Hydrocarbons (PAHs) that found uses in organic electronic devices such as OLEDs, OFETs, and OPVs due to their high fluorescence quantum yields and inherent deep-blue emission. New synthetic strategies are essential for selective functionalization of the pyrene core and modular control of its physical properties. In this work, we have developed a new strategy for the synthesis of unsymmetrical pyrenes and higher order PAHs via a one-pot double photocyclization sequence of simple and readily available starting materials. In the first part, we describe the development and optimization of this one-pot process to synthesize different unsymmetrical pyrenes containing functional groups of different donor and acceptor ability. The second part expands this new approach to the synthesis of higher order PAHs.</span></p> <p> </p> <p><span>Key Words : LEDs, Chemical Synthesis, Flexible Displays</span></p>
Site-Specific Alkene Hydromethylation via Protonolysis of Titanacyclobutanes Dr. James Frederich 22-002 Garrett Edmunds <p><span>Methyl groups are ubiquitous in biologically active molecules. Thus, new tactics to introduce this alkyl fragment into polyfunctional structures are of significant interest. With this goal in mind, a direct method for the Markovnikov hydromethylation of alkenes was developed by FSU researchers. This method exploits the degenerate metathesis reaction between the titanium methylidene unveiled from Cp2Ti(µ-Cl)(µ-CH2)AlMe2 (Tebbe’s reagent) and unactivated alkenes. Protonolysis of the resulting titanacyclobutanes in situ effects hydromethylation in a chemo-, regio-, and site-selective manner. The broad utility of this method is demonstrated across a series of mono and di-substituted alkenes containing pendant alcohols, ethers, amides, carbamates, and basic amines.</span></p> <p> </p> <p><span>Key Words : Chemical Synthesis</span></p>
LEDs from Metal Halide Perovskites Dr. Biwu Ma 18-034 Garrett Edmunds <p><span>Metal halide perovskites have emerged as a new class of low-cost solution processable semiconductor materials with applications in a variety of optoelectronic devices, from photovoltaics, to photodetectors, lasers, and light emitting diodes (LEDs). Efficient electrically driven LEDs with green light emission based on lead bromide perovskites, such as MAPbBr3 and CsPbBr3 have been achieved. While electrically driven perovskite LEDs have shown great promise with the device efficiency approaching to those of organic and quantum dot LEDs, a number of challenges, such as long-term stability and color tunability, remain to be addressed before the consideration of commercialization. For full-color display and solid-state lighting applications, highly efficient blue and red LEDs are required in addition to green ones, which however have yet achieved comparable device performance for perovskites-based devices. To implement red perovskite LEDs, two major strategies have been attempted to date, one relying on mixing halide, and the other involving the control of quantum well structures. Mixing halide has been shown to enable precise color tuning of photoluminescence and electroluminescence of perovskite LEDs. However, mixed halide perovskites show relatively low photoluminescence quantum efficiency. More critically, mixed-halide perovskites suffer from low spectral stability due to ion migration and phase separation under illumination and electric field. the change of electroluminescence color during the device operation has been observed in all LEDs based on mixed-halide perovskites. In this invention disclosure, we report bright and efficient red perovskites LEDs with great spectral stability by using quasi-2D halide perovskites/polymer (i.e. PEO, PVK, PIP, etc.) composite thin films as the light-emitting layer. By controlling the molar ratios of large organic salt (i.e. benzyl ammonium iodide, phenethylammonium iodide, butylammonium iodie, etc.) and inorganic salts (Csl and Pbl2), FSU researchers have been able to obtain luminescent quasi-2D perovskite thin films with tunable colors from red peaked at 615 nm to deep red peaked at 676 nm. The perovskites/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Advantages include: 1. These quasi-2D halide perovskites/polymer composite thin films have high photoluminescence quantum efficiency and superior thin film morpology. 2. Electrically driven LEDs with tunable emissions based on quasi-2D halide perovskites/polymer composite thin films have been achieved with superior device performance. 3. These devices show exceptional EL spectra stability and device performance stability.</span></p> <p> </p> <p><span>Key Words : Chemical Synthesis, LEDs, Perovskites</span></p>
Extending Nanostructured Charge Mosaic Polymeric Membranes to Multiblock Structures Justin Kennemur 23-018 Garrett Edmunds <p>An easily synthesized and highly efficient polymer membrane which can be used for water purification – especially desalination. The manufacturing method can also be used in industries interested in direct patterning of opposite charge polymers, such as nanoparticles, anti-bacterial coatings, and more.</p>
Ship Hull Coating to Prevent Marine Fouling Joseph Schlenoff, PhD 23-042 Garrett Edmunds <p class="lead">Marine fouling costs the shipping industry billions of dollars each year. This tough glass-like coating provides long-lasting protection, unlike potentially toxic gel-like alternatives.</p> <h2>Problem</h2> <p>On ships and in ports around the world, plants, algae, and marine animals such as barnacles find homes on whatever surfaces they can reach, a problem that costs the shipping industry billions of dollars each year. Known as “marine fouling,” these organisms are adapted to living on all manner of surfaces. Marine fouling accumulated on a ship’s hull can increase drag so much that a captain must use up to double the typical amount of fuel to move a ship through the water. Various antifouling coatings already exist, but many of these release toxic chemicals into water that can harm marine organisms. These materials are soft and gel-like, quickly degrading in harsh marine environments.</p> <h2>Solution</h2> <p>This tough coating, a blend of positively and negatively charged polymers called “zwiterglass”, is easily sprayed onto surfaces using water instead of volatile organic solvents. The surface is glassy and hard, with increased durability that provides long-lasting protection against the wear and tear of a marine environment. The high water content of the material prevents waterborne animals from latching onto it they way they would a rock or piece of metal.</p> <ul> <li>Easy spray-on application</li> <li>Long-lasting protection</li> <li>Environmentally friendly</li> <li>Reduce drag and fuel consumption</li> </ul> <h2>Applications</h2> <ul> <li>Shipping Industry</li> <li>Naval Ships</li> <li>Civilian Watercraft</li> <li>Docks and Buoys</li> </ul> antifouling,marine,coating,zwitterglass,polymer